Neutrophil adhesion molecules in experimental rhinovirus infection in COPD
نویسندگان
چکیده
BACKGROUND COPD exacerbations are associated with neutrophilic airway inflammation. Adhesion molecules on the surface of neutrophils may play a key role in their movement from blood to the airways. We analysed adhesion molecule expression on blood and sputum neutrophils from COPD subjects and non-obstructed smokers during experimental rhinovirus infections. METHODS Blood and sputum were collected from 9 COPD subjects and 10 smoking and age-matched control subjects at baseline, and neutrophil expression of the adhesion molecules and activation markers measured using flow cytometry. The markers examined were CD62L and CD162 (mediating initial steps of neutrophil rolling and capture), CD11a and CD11b (required for firm neutrophil adhesion), CD31 and CD54 (involved in neutrophil transmigration through the endothelial monolayer) and CD63 and CD66b (neutrophil activation markers). Subjects were then experimentally infected with rhinovirus-16 and repeat samples collected for neutrophil analysis at post-infection time points. RESULTS At baseline there were no differences in adhesion molecule expression between the COPD and non-COPD subjects. Expression of CD11a, CD31, CD62L and CD162 was reduced on sputum neutrophils compared to blood neutrophils. Following rhinovirus infection expression of CD11a expression on blood neutrophils was significantly reduced in both subject groups. CD11b, CD62L and CD162 expression was significantly reduced only in the COPD subjects. Blood neutrophil CD11b expression correlated inversely with inflammatory markers and symptom scores in COPD subjects. CONCLUSION Following rhinovirus infection neutrophils with higher surface expression of adhesion molecules are likely preferentially recruited to the lungs. CD11b may be a key molecule involved in neutrophil trafficking in COPD exacerbations.
منابع مشابه
H. influenzae potentiates airway epithelial cell responses to rhinovirus by increasing ICAM-1 and TLR3 expression.
Rhinovirus (RV) is an important trigger of chronic obstructive pulmonary disease (COPD) exacerbations. In addition, respiratory viruses are more likely to be isolated in patients with a history of frequent exacerbations, suggesting that these patients are more susceptible to viral infection. To examine potential mechanisms for cooperative effects between bacterial and viral infection in COPD, w...
متن کاملExperimental rhinovirus infection as a human model of chronic obstructive pulmonary disease exacerbation.
RATIONALE Respiratory virus infections are associated with chronic obstructive pulmonary disease (COPD) exacerbations, but a causative relationship has not been proven. Studies of naturally occurring exacerbations are difficult and the mechanisms linking virus infection to exacerbations are poorly understood. We hypothesized that experimental rhinovirus infection in subjects with COPD would rep...
متن کاملInhibitory effects of tiotropium on rhinovirus infection in human airway epithelial cells.
Infection by rhinoviruses (RVs) causes exacerbations of chronic obstructive pulmonary disease (COPD). The long-acting anti-cholinergic agent tiotropium reduces the frequency of COPD exacerbations, but the inhibitory effects of tiotropium on the COPD exacerbations induced by RVs are unclear. Likewise, the effects of tiotropium on RVs infection remain to be studied. To examine the effects of tiot...
متن کاملLymphocyte subsets in experimental rhinovirus infection in chronic obstructive pulmonary disease☆
BACKGROUND COPD is associated with increased numbers of T cells in the lungs, particularly CD8+ T cells. The mechanisms of increased T cells are unknown but may be related to repeated virus infections in COPD patients. We analysed lymphocyte subsets in blood and bronchoalveolar lavage in smokers and COPD subjects during experimental rhinovirus infections. METHODS Lymphocytes were isolated fro...
متن کاملBroncho Vaxom (OM-85) modulates rhinovirus docking proteins on human airway epithelial cells via Erk1/2 mitogen activated protein kinase and cAMP
BACKGROUND Bronchial epithelial cells (BEC) are primary target for Rhinovirus infection through attaching to cell membrane proteins. OM-85, a bacterial extract, improves recovery of asthma and COPD patients after viral infections, but only part of the mechanism was addressed, by focusing on defined immune cells. OBJECTIVE We therefore determined the effect of OM-85 on isolated primary human B...
متن کامل